top of page

Matinga Limiting Function Versus Lorentz Transformation

  • Sydney Matinga
  • Dec 12, 2025
  • 3 min read

Updated: Feb 1


Terms of Reference

Refer to the post, Terms of Use Agreement Xerqon Technologies, WIX Blog 2025, for early, legal due diligence.


The Matinga Limiting Function

The Lorenz Transformation and The Lorentz Factor, gamma, do not limit the the variable in the parentheses, as they must for some engineering applications. This problem is solved below via the Matinga Factor, 'Z'.


Consider the formula of the Matinga Limiting Function or Matinga Limiting Function:


(1)                     y   = ( ( r ^ 2 - x ^ 2 ) ^ 1/2 )  ,


                      f (x) = ( ( ( d/2 ) ^ 2 - x ^ 2 ) ^ 1/2 )


                                          Matinga Transformation (Z) ,


For technology, mathematics:

(2)                     A    =    pow (( pow ( a , 2 ) -  pow (x , 2 ) ) , 1/2 ) ,

                                                

                                               f (x)



Existing Problem

The Lorentz Factor which supports Albert Einstein's special theory of relativity is:


(1)             γ   =    1 / ( 1   -   v ^ 2 / c ^ 2 )^1/2 ,


(2)                  A       =    1 / pow ( ( pow (c , 2)  -  pow (v , 2) / pow (c , 2) ) , 1/2 ) ,


                                        pow ( ( ( (  1 - v / c ) , 2 ) , 1/2 ) , -1 ) 


In this equation, the v variable has the potential to exceed c. It requires earlier knowledge of physics to realise that you must stop at light speed, for the equation operator.  There are many equations where the scenario of exceeding a limit could prove to be very problematic in engineering. A solution has been developed:


                  E       =    Total Energy

                    U       =    Total Potential Energy            (Not only gravitational energy)

                     K       =    Kinetic Energy



(3)                  U      =   ( E ^ 2  -  K ^ 2 ) ^ 1/2 ,


(4)                  U      =   m * ( c ^ 2   -   v ^ 2 ) ^ 1/2 , 


(5)                  u      =   ( c ^ 2   -  v ^ 2 ) ^1/2             


(6)                 m * u     =   pow ( m * ( c ^2   -   v ^2 ) , 1/2 )


For (1) to (3), a new understanding of BODMAS must be understood.  It is in a post of this Xerqon blog, entitled, BODMAS Reviewed - a Better Technology Version.


(7)                      =    1 / ( ( c ^ 2    -    v ^ 2 )  / c ^ 2 ) ^ 1/2


// The limiting equation highlighted with a substituted divisor, c ^ 2.       //


The Lorentz transform contains the Limit Function.  Yet Hendrik Lorentz did not mathematically identify it or, obviously, its tremendous potential. For years, many have suggested that the equation does not limit v to a maxim of c. It required former physics knowledge of the speed of light.


That is not true. It only required a working knowledge of the circular function, in any transposition, including the Sine wave generator, which (( d/2 )^2   -   x^2) ^ 1/2   is, as is  (c^2    -    x^2) ^ 1/2. For mathematics expression ‘ d/2 ’ substitutes ‘r’.


© Xerqon ABN 97661410108 2025

 
 
 

Recent Posts

See All
Metal Carbide - Hardened Alloys and Semiconductors

Terms of Reference Refer to the post, Terms of Use Agreement Xerqon Technologies, WIX Blog 2025 , for early, legal due diligence. Metal Carbide (Carbide) The Agreement for the Intellectual Property ri

 
 
 

Comments


Technology Transfer Protocol

The first stage of Centreweave's distribution model will be an auction for 5 distributor/user organisations to compete for that level of exclusivity. The field of bidders will be up to 100 commercially interested organisations worldwide. For engineering or IT integration enquiries, email managingdirector@centreweave.com.

© Xerqon ABN 97661410108 2025

bottom of page